Differential Equations

3-1 Fundamental Definitions

1- Differential Equation

Is an equation involving a function and one or more of its derivatives, and they are classified by :
a- Type (Namely, Ordinary or Partial)

1- Ordinary Differential Equation

If the derivatives which appear in a differential equation are total derivatives, that is, derivatives of a function of a single variable, is called an ordinary differential equation, for example,

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-2 y=0 \quad \text { or } \quad y^{\prime \prime}+3 y^{\prime}-2 y=0
$$

in simple term

$$
\frac{d y}{d x}=y^{\prime}, \frac{d^{2} y}{d x^{2}}=y^{\prime \prime}, \frac{d^{3} y}{d x^{3}}=y^{\prime \prime \prime}, \text { and so on }
$$

2- Partial Differential Equation

A differential equation involving a function of several variables and its partial derivatives is called a partial differential equation, for instance

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

b- Order
That of the highest order derivative that occurs in the equation, for example

$$
y^{\prime}=x+6 \quad \text { ordinary, first order }
$$

$\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=x^{2}+y \quad$ partial, second order

c- Degree

the exponent of the highest power of the highest order derivative, after the equation has been cleared of fractions and radicals in the dependent variable and its derivatives, for example:

$$
\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{5}+\frac{y}{x^{2}+1}=e^{x} \quad \begin{aligned}
& \text { ordinary, third order } \\
& \text { and second degree }
\end{aligned}
$$

d- Linearity

An equation which is linear, i.e., of the first degree, in the dependent variable and its derivatives is called a linear differential equation. From this definition it follows that the most general ordinary linear differential of order n is of the form :
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots .+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=F(x)$
Where the a's are function of x

A differential equation which is not linear, i.e., of the second degree and over and cannot be put in the above form, is said to be nonlinear.
$\left(y^{\prime \prime \prime}\right)^{2}+\left(y^{\prime \prime}\right)^{5}+\frac{y}{x^{2}+1}=e^{x}$
ordinary, third order and second degree, nonlinear
2- Solution of a Differential Equation
We call a function $y=f(x)$ a solution of a differential equation if y and its derivatives satisfy the equation

a- General Solution

A formula that gives all the solutions of a differential equation is called the general solution of the equation. To solve a differential equation means to find its general solution.

EX:-

Show that for any values of the arbitrary constants C_{1} and C_{2} the function $y=C_{1} \cos x+C_{2} \sin x$ is a solution of the differential equation

$$
\frac{d^{2} y}{d x^{2}}+y=0
$$

$$
y=C_{1} \cos x+C_{2} \sin x
$$

$$
\frac{d y}{d x}=-C_{1} \sin x+C_{2} \cos x
$$

$$
\frac{d^{2} y}{d x^{2}}=-C_{1} \cos x-C_{2} \sin x
$$

$$
\frac{d^{2} y}{d x^{2}}+y=\left(-C_{1} \cos x-C_{2} \sin x\right)+\left(C_{1} \cos x+C_{2} \sin x\right)=0
$$

Notice that the equation $\frac{d^{2} y}{d x^{2}}+y=0$ has order two and that its general solution has two arbitrary constants.

b- Particular Solution

A particular solution of a differential equation is any solution that is obtained by assigning specific values to the constants in the general solution. In practice, particular solutions to a differential equation are usually obtained from initial conditions or boundary conditions that give the value of the dependent variable or one of its derivatives for a particular value of the independent variable

$$
\text { For example, if } y(0)=1 \text { and } y^{\prime}(0)=0 \text { in the above example }
$$

then the particular solution is

$$
\begin{aligned}
& y(0)=1=C_{1} \cos 0+C_{2} \sin 0 \Rightarrow C_{1}=1 \\
& y^{\prime}(0)=0=-C_{1} \sin 0+C_{2} \cos 0 \Rightarrow C_{2}=0 \\
& y=\cos x \quad \text { the particular solution }
\end{aligned}
$$

3-2 Solutions of The First-Order Differential Equations

1- Separation of Variable in First-Order Differential Equations

Reference : Thomas G.B., Weir, Hass, Giordano. Thomas's calculus (12ed.). Chapter 9 Page 513

A first order differential equation is separable if it can be put in the form

$$
M(x) d x+N(y) d y=0
$$

Where M is a continuous function of x alone and N is a continuous function of y alone.

The steps are as follows :
1- Express the given equation in the differential form

$$
M(x) d x+N(y) d y=0 \quad \text { or } \quad M(x) d x=-N(y) d y
$$

2- Integrate to obtain the general solution

$$
\int M(x) d x+\int N(y) d y=C
$$

or $\int M(x) d x=-\int N(y) d y+C$

EX1 :-

Find the general solution to $\left(x^{2}+4\right) \frac{d y}{d x}=x y$

$$
\left(x^{2}+4\right) \frac{d y}{d x}=x y \quad \Rightarrow\left(x^{2}+4\right) d y=x y d x
$$

$$
\frac{d y}{y}=\frac{x d x}{\left(x^{2}+4\right)}
$$

(separate variables)
$\int \frac{d y}{y}=\int \frac{x d x}{\left(x^{2}+4\right)}$
(integrate)
$\ln y=\frac{1}{2} \ln \left(x^{2}+4\right)+C_{1}=\ln \left(x^{2}+4\right)^{\frac{1}{2}}+C_{1}$
$y=e^{C_{1}} \sqrt{x^{2}+4} \Rightarrow y=C \sqrt{x^{2}+4}$
the general solution

EX2 :-

Find the particular solution to the differential equation $x y d x+e^{-x^{2}}\left(y^{2}-1\right) d y=0 \quad$ when $y(0)=1$.
Solution
Solution
By multiplying equ. $\left(\frac{e^{x^{2}}}{y}\right)$
$\left(\frac{e^{x^{2}}}{y}\right) x y d x+\left(\frac{e^{x^{2}}}{y}\right) e^{-x^{2}}\left(y^{2}-1\right) d y=0$
$x e^{x^{2}} d x+\left(y-\frac{1}{y}\right) d y=0 \Rightarrow \int x e^{x^{2}} d x+\int\left(y-\frac{1}{y}\right) d y=0$
$\frac{1}{2} e^{x^{2}}+\frac{y^{2}}{2}-\ln y=C_{1} \Rightarrow e^{x^{2}}+y^{2}-\ln y^{2}=2 C_{1}=C$
$y=1$ when $x=0 \Rightarrow 1+1+0=C$
$e^{x^{2}}+y^{2}-\ln y^{2}=2 \quad$ particular solution

EX Solve the differential equation

$$
\left(\frac{\cos ^{2} 3 x}{x y}+\frac{2 x}{y}\right) d x+\left(\frac{\sin y+5}{x}\right) d y=0
$$

Solution

By multiplying equ. (xy)

$$
\begin{aligned}
& \left(\cos ^{2} 3 x+2 x^{2}\right) d x+(y \sin y+5 y) d y=0 \\
& \left(\frac{1}{2}(\cos 6 x+1)+2 x^{2}\right) d x+(y \sin y+5 y) d y=0
\end{aligned}
$$

Use Integration by parts to solve ysiny $\Rightarrow \int u d v=u v-\int v d u$

$$
u=y \quad ; \quad d u=d y \quad ; \quad d v=\text { sinydy } ; \quad v=-\cos y
$$

$$
\int\left(\frac{1}{2}(\cos 6 x+1)+2 x^{2}\right) d x-y \cos y+\int(\cos y+5 y) d y=0
$$

$$
\frac{1}{12} \sin 6 x+\frac{1}{2} x+\frac{2}{3} x^{3}-y \cos y+\sin y+\frac{5}{2} y^{2}=C
$$

2- Homogeneous First-Order Differential Equations

The function given by $z=f(x, y)$ is said to be homogeneous of degree n if $f(t x, t y)=t^{n} f(x, y) \quad$ where n is a real number

EX1:-

Verify the function $f(x, y)=x^{2} y-4 x^{3}+3 x y^{2}$ is a homogeneous function. Solution

$$
\begin{aligned}
f(t x, t y) & =(t x)^{2}(t y)-4(t x)^{3}+3(t x)(t y)^{2} \\
& =t^{3} x^{2} y-4 t^{3} x^{3}+3 t^{3} x y^{2} \\
& =t^{3}\left(x^{2} y-4 x^{3}+3 x y^{2}\right) \\
f(t x, t y) & =t^{3} f(x, y)
\end{aligned}
$$

Then the function $f(x, y)=x^{2} y-4 x^{3}+3 x y^{2}$ is a homogeneous function of degree 3 .

$$
M(x, y) d x+N(x, y) d y=0
$$

Where M and N are homogeneous functions of the same degree.
A first order differential equation is homogeneous if it can be put into the form

$$
\begin{align*}
& \frac{d y}{d x}=F\left(\frac{y}{x}\right) \ldots \ldots . .(a) \tag{a}\\
& \frac{y}{x}=v \Rightarrow y=v x \Rightarrow d y=v d x+x d v
\end{align*}
$$

$$
\frac{d y}{d x}=v+x \frac{d v}{d x} \quad \text { substitue in equation (a) }
$$

$v+x \frac{d v}{d x}=F(v)$ which can be rearranged
$\frac{d x}{x}+\frac{d v}{v-F(v)}=0$

With the variables now separated, we can now solve the equation by integrating with respect to x and v, we can then return to x and y substituting $v=y / x$.

The steps are as follows:
1- Express the given equation in the form

$$
\begin{aligned}
& \frac{d y}{d x}=F\left(\frac{y}{x}\right) \\
& \text { 2- Let } \frac{y}{x}=v \Rightarrow \frac{d x}{x}+\frac{d v}{v-F(v)}=0
\end{aligned}
$$

3 - integrating with respect to x and v
4- return to x and y substituting $v=y / x$ to obtain the general solution

EX

Show that the equation $\left(2 x^{3}+y^{3}\right) d x-3 x y^{2} d y=0$ is homogeneous and find its general solution.

Solution
$M(x, y)=2 x^{3}+y^{3} \Rightarrow M(t x, t y)=2(t x)^{3}+(t y)^{3}=t^{3}\left(2 x^{3}+y^{3}\right) k$
is homogeneous form degree 3
$N(x, y)=-3 x y^{2} \Rightarrow N(t x, t y)=-3(t x)(t y)^{2}=-3 t^{3} x y^{2}$
is homogeneous form degree 3
$\left(2 x^{3}+y^{3}\right) d x-3 x y^{2} d y=0$
$\frac{d y}{d x}=\frac{2 x^{3}+y^{3}}{3 x y^{2}}=\frac{2+\left(\frac{y}{x}\right)^{3}}{3\left(\frac{y}{x}\right)^{2}}=\frac{2+v^{3}}{3 v^{2}}=F(v)$

$$
\begin{aligned}
& \frac{d x}{x}+\frac{d v}{v-F(v)}=0 \Rightarrow \frac{d x}{x}+\frac{d v}{v-\frac{\left(2+v^{3}\right)}{3 v^{2}}}=0 \\
& \frac{d x}{x}+\frac{3 v^{2}}{2\left(v^{3}-1\right)} d v=0
\end{aligned}
$$

$$
\ln x+\frac{1}{2} \ln \left(v^{3}-1\right)=C_{1} \Rightarrow 2 \ln x+\ln \left(v^{3}-1\right)=2 C_{1}
$$

$$
\left(\left(\frac{y}{x}\right)^{3}-1\right) x^{2}=C
$$

$y^{3}-x^{3}=C x \quad$ the general solution

EX Solve the differential equation $x^{2} y^{\prime}=y(3 x-2 y)$
Solution

$$
\begin{aligned}
& \text { Solution } \\
& \qquad \begin{aligned}
y^{\prime} & =\frac{y(3 x-2 y)}{x^{2}}=\frac{y^{2}\left(\frac{3 x}{y}-2\right)}{x^{2}}=v^{2}\left(\frac{3}{v}-2\right) \\
& =3 v-2 v^{2}=F(v)
\end{aligned} \\
& \frac{d x}{x}+\frac{d v}{v-F(v)}=0 \Rightarrow \frac{d x}{x}+\frac{d v}{v-\left(3 v-2 v^{2}\right)}=0
\end{aligned}
$$

$\frac{d x}{x}+\frac{d v}{2 v^{2}-2 v}=\frac{d x}{x}+\frac{d v}{2 v(v-1)}=\frac{d x}{x}+\frac{1}{2}\left(\frac{1}{v-1}-\frac{1}{v}\right) d v=0$
$\ln x+\frac{1}{2} \ln (v-1)-\frac{1}{2} \ln (v)=C_{1}$

$$
\begin{aligned}
& 2 \ln x+\ln (v-1)-\ln (v)=2 C_{1} \Rightarrow x^{2}=C\left(\frac{v}{v-1}\right) \\
& x^{2}=C\left(\frac{\frac{y}{x}}{\frac{y}{x}-1}\right)=C\left(\frac{y}{y-x}\right) \text { the general solution }
\end{aligned}
$$

3- Exact First-Order Differential Equations

$$
M(x, y) d x+N(x, y) d y=0
$$

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \quad \text { (Exact equation) }
$$

$$
M(x, y) d x+N(x, y) d y=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=d f
$$

Steps for solving an equation you know to be exact
1- Match the equation to the form $d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y$ to identify $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
2- Integrate $\frac{\partial \dot{f}}{\partial x}$ with respect to x, writing the constant of integration as $k(y)$.

3- Differentiate with respect to y and set the result

$$
\text { equal to } \frac{\partial f}{\partial y} \text { to find } k^{\prime}(y)
$$

4- Integrate to find $k(y)$ and determine f.

5- write the solution of the exact equation as $f(x, y)=C$.

EX

Show that the differential equation $\left(2 x y-3 x^{2}\right) d x+\left(x^{2}-2 y\right) d y=0$ is exact and find its general solution.

Solution

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left[2 x y-3 x^{2}\right]=2 x \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left[x^{2}-2 y\right]=2 x \\
& \frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y=\left(2 x y-3 x^{2}\right) d x+\left(x^{2}-2 y\right) d y \\
& \frac{\partial f}{\partial x}=\left(2 x y-3 x^{2}\right) \text { and } \frac{\partial f}{\partial y}=\left(x^{2}-2 y\right)
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=\int\left(2 x y-3 x^{2}\right) d x=x^{2} y-x^{3}+k(y) \\
& \frac{\partial}{\partial y}\left(x^{2} y-x^{3}+k(y)\right)=x^{2}+k^{\prime}(y)=\frac{\partial f}{\partial y}=\left(x^{2}-2 y\right) \\
& k^{\prime}(y)=-2 y \\
& k(y)=\int k^{\prime}(y) d y=\int-2 y d y=-y^{2}+C_{1} \\
& f(x, y)=x^{2} y-x^{3}-y^{2}+C_{1} \\
& x^{2} y-x^{3}-y^{2}=C \quad \text { the general solution }
\end{aligned}
$$

EX Solve the differential equation

$$
\left(y^{2}-\frac{y}{x(x+y)}+2\right) d x+\left(\frac{1}{(x+y)}+2 y(x+1)\right) d y=0
$$

Solution

$$
\left.\begin{array}{l}
\frac{\partial M}{\partial y} \\
=\frac{\partial}{\partial y}\left(y^{2}-\frac{y}{x(x+y)}+2\right)=2 y-\frac{1}{x}\left(\frac{(x+y)-y}{(x+y)^{2}}\right) \\
\\
=2 y-\frac{1}{(x+y)^{2}} \\
\frac{\partial N}{\partial x}
\end{array}=\frac{\partial}{\partial x}\left(\frac{1}{(x+y)}+2 y(x+1)\right)=2 y-\frac{1}{(x+y)^{2}}\right) ~=\left(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\right)
$$

$$
\begin{aligned}
& f(x, y)=\int\left(\frac{1}{(x+y)}+2 y(x+1)\right) d y \\
& \quad=\ln (x+y)+y^{2}(x+1)+k(x) \\
& \frac{\partial f}{\partial x}=\frac{1}{(x+y)}+y^{2}+k^{\prime}(x)=y^{2}-\frac{y}{x(x+y)}+2 \\
& k^{\prime}(x)=2-\left(\frac{y}{x(x+y)}+\frac{1}{(x+y)}\right)=2-\frac{1}{x} \\
& k(x)=\int k^{\prime}(x) d x=2 x-\ln x+C_{1} \\
& f(x, y)=\ln (x+y)+y^{2}(x+1)+2 x-\ln x=C \\
& \text { the general solution }
\end{aligned}
$$

Integrating Factors

If the differential equation $M(x, y) d x+N(x, y) d y=0$ is not exact, it may be possible to make it exact by multiplying by an appropriate factor u, called an integrating factor for the differential equation.

For instance

$2 y d x+x d y=0$ not exact
multiplied by the integrating factor $\boldsymbol{u}=\boldsymbol{x}$,
$2 x y d x+x^{2} d y=0 \quad$ Exact equations

Finding Integrating Factors

For the differential equation $M(x, y) d x+N(x, y) d y=0$

$$
1 \text { - If } \frac{1}{N(x, y)}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=h(x)
$$

is a function of x alone, then $e^{\int h(x) d x}$ is an integrating factor.
2 - If $\frac{1}{M(x, y)}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=k(y)$
is a function of y alone, then $e^{\int k(y) d y}$ is an integrating factor.
EX :-
Find the general solution to the differential equation $\left(y^{2}-x\right) d x+2 y d y=0$ Solution
$\frac{\partial M}{\partial y}=2 y$ and $\frac{\partial N}{\partial x}=0$ not exact.
$\frac{1}{N(x, y)}\left[\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right]=\frac{2 y-0}{2 y}=1=h(x)$
$e^{\int h(x) d x}=e^{\int d x}=e^{x} \quad$ integration factor
Multiplying the given differential equation by e^{x}

$$
\begin{aligned}
& \left(y^{2} e^{x}-x e^{x}\right) d x+2 y e^{x} d y=0 \\
& f(x, y)=\int N(x, y) d y=\int 2 y e^{x} d y=y^{2} e^{x}+g(x)
\end{aligned}
$$

$$
\frac{\partial}{\partial x}\left(y^{2} e^{x}+g(x)\right)=y^{2} e^{x}+g^{\prime}(x)=y^{2} e^{x}-x e^{x}
$$

$$
g^{\prime}(x)=-x e^{x} \Rightarrow g(x)=-x e^{x}+e^{x}+C_{1}
$$

$$
f(x, y)=y^{2} e^{x}-x e^{x}+e^{x}+C_{1}
$$

$$
\left(y^{2}-x+1\right) e^{x}=C
$$

EX Solve the differential equation $y^{\prime}=\frac{3 y}{\left(\frac{y}{y^{3}-1}-6 x\right)}$
Solution
$3 y d x-\left(\frac{y}{y^{3}-1}-6 x\right) d y=0$
$\frac{\partial M}{\partial y}=3$ and $\frac{\partial N}{\partial x}=6$ not exact.
$\frac{1}{M(x, y)}\left[\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right]=k(y) ; \frac{1}{3 y}(6-3)=\frac{1}{y}$
$e^{\int k(y) d y}=e^{\int \frac{1}{y} d y}=e^{\ln y}=y \quad$ integration factor
Multiplying the given differential equation by \mathbf{y}
$3 y^{2} d x-\left(\frac{y^{2}}{y^{3}-1}-6 x y\right) d y=0$
$f(x, y)=\int 3 y^{2} d x=3 y^{2} x+k(y)$

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left[3 y^{2} x+k(y)\right]=6 y x+k^{\prime}(y)=-\frac{y^{2}}{y^{3}-1}+6 x y \\
& k^{\prime}(y)=-\frac{y^{2}}{y^{3}-1} ; \quad k(y)=-\frac{1}{3} \ln \left(y^{3}-1\right)+C_{1} \\
& f(x, y)=3 x y^{2}-\frac{1}{3} \ln \left(y^{3}-1\right)=C
\end{aligned}
$$

4- First-Order Linear Differential Equations
A First-order linear differential equation is an equation of the form
$\frac{d y}{d x}+P(x) y=Q(x)$ or $y^{\prime}+P(x) y=Q(x)$
Where P and Q are continuous functions of x
use an integrating factor $\mathbf{u}(\mathbf{x})$, which converts the left side into the derivative of the product $\mathbf{u}(\mathbf{x}) \mathbf{y}$. That is, we need a factor $\mathbf{u}(\mathbf{x})$ such that
$u(x) \frac{d y}{d x}+u(x) P(x) y=\frac{d[u(x) y]}{d x}$
By expanding the right side
$u(x) y^{\prime}+u(x) P(x) y=u(x) y^{\prime}+y u^{\prime}(x) \Rightarrow u(x) P(x) y=y u^{\prime}(x)$
$P(x)=\frac{u^{\prime}(x)}{u(x)} \quad$ Integration with respect to x yields
$\ln u(x)=\int P(x) d x+C_{1} \Rightarrow u(x)=C e^{\int P(x) d x} \Rightarrow u(x)=e^{\int P(x) d x}$ let $\mathrm{C}=1$
$y^{\prime} e^{\int P(x) d x}+y P(x) e^{\int P(x) d x}=Q(x) e^{\int P(x) d x}$
$\frac{d}{d x}\left[y e^{\int P(x) d x}\right]=Q(x) e^{\int P(x) d x}$
whose general solution is given by
$y e^{\int P(x) d x}=\int Q(x) e^{\int P(x) d x}+C$
$y=\frac{1}{u(x)}\left[\int Q(x) u(x) d x+C\right]$
Steps for solving a linear first-order differential equation
1- put it in standard form $y^{\prime}+P(x) y=Q(x)$
2- find $\int P(x) d x$ then find $u(x)=e^{\int P(x) d x}$
3- use equation $y=\frac{1}{u(x)}\left[\int Q(x) u(x) d x+C\right]$ to find y
EX Find the general solution to the differential equation

$$
x y^{\prime}-2 y=x^{2}
$$

Solution

$$
\begin{aligned}
& y^{\prime}-\left(\frac{2}{x}\right) y=x \Rightarrow P(x)=-\frac{2}{x}, Q(x)=x \\
& \int P(x) d x=-\int \frac{2}{x} d x=-\ln x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& u(x)=e^{\int P(x) d x}=e^{-\ln x^{2}}=\frac{1}{x^{2}} \\
& y=\frac{1}{u(x)}\left[\int Q(x) u(x) d x+C\right] \\
& y=\frac{1}{1 / x^{2}}\left[\int x \frac{1}{x^{2}} d x+C\right] \Rightarrow y=x^{2} \ln x+C x^{2} \text { general solution }
\end{aligned}
$$

EX Find the general solution to the differential equation

$$
x^{2} y^{\prime}+2=x\left(y+2 y^{\prime}+1\right)
$$

Solution

$$
\begin{aligned}
& \left(x^{2}-2 x\right) y^{\prime}-x y=x-2 \Rightarrow x(x-2) y^{\prime}-x y=x-2 \\
& y^{\prime}-\frac{1}{x-2} y=\frac{1}{x} ; \\
& P(x)=-\frac{1}{x-2} y ; Q(x)=\frac{1}{x} \\
& \int P(x) d x=-\int \frac{1}{x-2} d x=-\ln (x-2) \\
& u(x)=e^{\int P(x) d x}=e^{-\ln (x-2)}=\frac{1}{x-2}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{1}{u(x)}\left[\int Q(x) u(x) d x+C\right] \\
& y=\frac{1}{1 / x-2}\left[\int \frac{1}{x(x-2)} d x+C\right] \\
& y=(x-2)\left[\int \frac{1}{2}\left(\frac{1}{(x-2)}-\frac{1}{x}\right) d x+C\right] \\
& y=(x-2)\left[\frac{1}{2}(\ln (x-2)-\ln (x)+C]\right. \text { general solution }
\end{aligned}
$$

Bernoulli Equation

$$
y^{\prime}+P(x) y=Q(x) y^{n}
$$

This equation is linear if $n=0$, and has separable variables if $n=1$. we assune that $n \neq 0$ and $n \neq 1$,

$$
\begin{aligned}
& \left.y^{-n} y^{\prime}+P(x) y^{1-n}=Q(x) \quad \quad \quad \text { (multiplying by } y^{-n}\right) \\
& \left.(1-n) y^{-n} y^{\prime}+(1-n) P(x) y^{1-n}=(1-n) Q(x) \quad \text { (multiplying by }(1-n)\right) \\
& \frac{d}{d x}\left[y^{1-n}\right]+(1-n) P(x) y^{1-n}=(1-n) Q(x)
\end{aligned}
$$

Which is a linear equation in the variable y^{l-n}
let $z=y^{1-n}$
$\frac{d z}{d x}+(1-n) P(x) z=(1-n) Q(x)$ or $z^{\prime}+(1-n) P(x) z=(1-n) Q(x)$
the general solution to the Bernoulli equation is
$z=\frac{1}{u(x)}\left[\int(1-n) Q(x) u(x) d x+C\right]$
Where $u(x)=e^{\int(1-n) P(x) d x}$ and $z=y^{1-n}$
EX Find the general solution to the differential equation

$$
y^{\prime}+x y=x e^{-x^{2}} y^{-3}
$$

Solution

$$
n=-3, \quad z=y^{1-n}=y^{4} \quad, P(x)=x \text { and } Q(x)=x e^{-x^{2}}
$$

$$
z^{\prime}+(1-n) P(x) z=(1-n) Q(x)
$$

$$
z^{\prime}+4 x z=4 x e^{-x^{2}}
$$

$u(x)=e^{\int(1-n) P(x) d x}=e^{\int 4 x d x}=e^{2 x^{2}}$
$z=\frac{1}{u(x)}\left[\int(1-n) Q(x) u(x) d x+C\right]$
$z=\frac{1}{e^{2 x^{2}}}\left[\int 4 x e^{-x^{2}} e^{2 x^{2}} d x+C\right]=e^{-2 x^{2}}\left[2 e^{x^{2}}+C\right]$
$y^{4}=2 e^{-x^{2}}+C e^{-2 x^{2}} \quad$ general solution
EX Find the general solution to the differential equation

$$
x y^{\prime}+y=(x+3)(2 x y)^{2}-3 y^{\prime}
$$

Solution
$(x+3) y^{\prime}+y=(x+3)(2 x y)^{2} \Rightarrow y^{\prime}+\frac{1}{x+3} y=4 x^{2} y^{2}$
$n=2 ; z=y^{1-n}=y^{-1} ; \quad P(x)=\frac{1}{x+3} ; Q(x)=4 x^{2}$

$$
\begin{aligned}
& z^{\prime}+(1-n) P(x) z=(1-n) Q(x) \\
& z^{\prime}-\frac{1}{x+3} z=-4 x^{2} \\
& u(x)=e^{\int(1-n) P(x) d x}=e^{-\int \frac{1}{x+3} d x}=e^{-\ln (x+3)}=\frac{1}{x+3} \\
& z=\frac{1}{u(x)}\left[\int(1-n) Q(x) u(x) d x+C\right] \\
& \quad=\frac{1}{1 / x+3}\left[\int \frac{-4 x^{2}}{x+3} d x+C\right] \\
& \quad=(x+3)\left[-4 \int\left(x-3+\frac{9}{x+3}\right) d x+C\right]
\end{aligned}
$$

general solution

Summary of First-Order Differential Equations

Method	Form of Equation
1-Separable variables	$M(x) d x+N(y) d y=0$
2-Homogeneous	$M(x, y) d x+N(x, y) d y=0$, where M and N are nth-degree homogeneous
3-Exact	$M(x, y) d x+N(x, y) d y=0$ where $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$
4- Integrating factor	$u(x, y) M(x, y) d x+u(x, y) N(x, y) d y=0$ is exact
5-Linear	$y^{\prime}+P(x) y=Q(x)$
6-Bernoulli	$y^{\prime}+P(x) y=Q(x) y^{n}$

3-3 Solutions of The Second-Order Differential Equations
Reference : Thomas G.B., Weir, Hass, Giordano. Thomas's calculus (12ed.). Chapter 17 Page 989

1- Second Order Differential Equations Reducible to First Order
A- If the second order differential equation has a form
$F\left(x, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right)=0$
as it is from the equation

$$
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=x^{2}
$$

Let $\frac{d y}{d x}=p \quad$ and $\frac{d^{2} y}{d x^{2}}=\frac{d p}{d x}$
$x \frac{d p}{d x}+p=x^{2}$
to find p and solving $\frac{d y}{d x}=p$ to find y

EX Find the general solution to the differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0
$$

Solution
Let $\frac{d y}{d x}=p \quad$ and $\frac{d^{2} y}{d x^{2}}=\frac{d p}{d x}=\mathrm{p}^{\prime}$
$\frac{d p}{d x}+p=0 \Rightarrow d p+p d x=0 \Rightarrow \frac{d p}{p}+d x=0$
$\int \frac{1}{p} d p=-\int d x \Rightarrow \ln p=-x+C \Rightarrow p=C e^{-x}$
$\frac{d y}{d x}=p \Rightarrow y=\int p d x \Rightarrow$
$y=\int C e^{-x} d x=-C e^{-x}+C_{1}$
general solution

EX Find the general solution to the differential equation

$$
x^{2} y^{\prime \prime}+\left(y^{\prime}\right)^{2}-2 x y^{\prime}=0
$$

Solution
Let $p=y^{\prime}, \quad p^{\prime}=y^{\prime \prime}\left(\frac{d p}{d x}=\frac{d^{2} y}{d x^{2}} \quad, \quad p=\frac{d y}{d x}\right)$
$x^{2} p^{\prime}-2 x p=-p^{2} \Rightarrow \frac{d p}{d x}-\frac{2}{x} p=-\frac{1}{x^{2}} p^{2}$ Bernoulli Equation
$n=2 ; z=p^{1-n}=p^{-1} ; P(x)=-\frac{2}{x} ; Q(x)=-\frac{1}{x^{2}}$
$z^{\prime}+(1-n) P(x) z=(1-n) Q(x)$

$$
z^{\prime}+\frac{2}{x} \mathrm{z}=\frac{1}{x^{2}}
$$

$u(x)=e^{\int(1-n) P(x) d x}=e^{\int \frac{2}{x} d x}=e^{2 \ln x}=x^{2}$

$$
\begin{aligned}
& z=\frac{1}{u(x)}\left[\int(1-n) Q(x) u(x) d x+C\right] \\
& z=\frac{1}{x^{2}}\left[\int \frac{1}{x^{2}} x^{2} d x+C\right]=\frac{1}{x^{2}}\left[\int d x+C\right]=\frac{1}{x^{2}}[x+C] \\
& z=\frac{x+C}{x^{2}} \Rightarrow z=p^{-1}=\frac{1}{p} \Rightarrow p=\frac{x^{2}}{x+c} \\
& \frac{d y}{d x}=\frac{x^{2}}{x+c} \Rightarrow d y=\frac{x^{2}}{x+c} d x \\
& y=\int\left[x-c+\frac{c^{2}}{x+c}\right] d x \\
& y=\frac{x^{2}}{2}-C x+C^{2} \ln (x+C)+C_{1} \quad \text { general solution }
\end{aligned}
$$

B- If the second order differential equation has a form

$$
\begin{aligned}
& F\left(y, \frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}\right) \\
& p=\frac{d y}{d x} \quad ; \quad \frac{d p}{d x}=\frac{d^{2} y}{d x^{2}}=\frac{d p}{d y} \cdot \frac{d y}{d x}=p \frac{d p}{d y} \Rightarrow F\left(y, p, p \frac{d p}{d y}\right)
\end{aligned}
$$

EX Find the general solution to the differential equation

$$
y^{\prime \prime}-y=0
$$

Solution

$$
y^{\prime \prime}=p \frac{d p}{d y} ; \Rightarrow p \frac{d p}{d y}-y=0
$$

$$
p d p=y d y \quad(\text { separation of variables })
$$

$$
\frac{p^{2}}{2}=\frac{y^{2}}{2}+C \Rightarrow p^{2}=y^{2}+C_{1} \Rightarrow p=\sqrt{y^{2}+C_{1}}
$$

$$
\begin{aligned}
& p=\frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\sqrt{y^{2}+C_{1}} \\
& \frac{1}{\sqrt{y^{2}+C_{1}}} d y=d x \Rightarrow \sinh ^{-1} \frac{y}{\sqrt{C_{1}}}=x+C_{2}
\end{aligned}
$$

EX Find the general solution to the differential equation

$$
\left(y^{2}-1\right) y^{\prime \prime}=y^{\prime}\left(1-2 y y^{\prime}\right)
$$

Solution

$$
\begin{aligned}
& y^{\prime \prime}=p \frac{d p}{d y} ; p=\frac{d y}{d x} ;\left(y^{2}-1\right) p \frac{d p}{d y}=p(1-2 y p) \\
& \frac{d p}{d y}+\frac{2 y}{\left(y^{2}-1\right)} p=\frac{1}{\left(y^{2}-1\right)}
\end{aligned}
$$

$$
P(y)=\frac{2 y}{\left(y^{2}-1\right)} ; \mathrm{Q}(\mathrm{y})=\frac{1}{\left(y^{2}-1\right)}
$$

$$
\begin{aligned}
& u(y)=e^{\int \frac{2 y}{y^{2}-1} d y}=e^{\ln \left(y^{2}-1\right)}=y^{2}-1 \\
& p=\frac{1}{u(y)}\left[\int Q(y) u(y) d y+C\right]=\frac{1}{y^{2}-1}\left[\int\left(y^{2}-1\right) \frac{1}{y^{2}-1} d y+C\right] \\
& \quad=\frac{y+C}{y^{2}-1} \\
& p=\frac{d y}{d x} \\
& \frac{d y}{d x}=\frac{y+C}{y^{2}-1} ; \int d x=\int \frac{y^{2}-1}{y+C} d y \\
& x=\int\left(\frac{y^{2}}{y+C}-\frac{1}{y+C}\right) d y=\int\left(y-C+\frac{C^{2}}{y+C}-\frac{1}{y+C}\right) d y \\
& x=\frac{y^{2}}{2}-C y+\left(C^{2}-1\right) \ln (y+C)+C_{1} \quad \text { general solution }
\end{aligned}
$$

2- Second-Order Homogeneous Linear Differential Equations
The general form of linear differential equation of order n is
$a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots .+a_{1}(x) \frac{d y}{d x}+a_{o}(x) y=F(x)$
$F(x)=0$, homogeneous
$F(x) \neq 0 \quad$ nonhomogeneous
For the homogeneous case
$a_{n}(x) D^{n} y+a_{n-1}(x) D^{n-1} y+\ldots+a_{1}(x) D y+a_{o}(x) y=0$
where $\quad D=\frac{d}{d x} ; D^{2}=\frac{d^{2}}{d x^{2}} ; \quad D^{n}=\frac{d^{n}}{d x^{n}}$
and called linear differential operator

For $n=2$ (second order) and $a_{o}, a_{1}, \ldots . ., a_{n}$ are constants then :

$$
a_{2} D^{2} y+a_{1} D y+a_{o} y=0 \Rightarrow D^{2} y+\frac{a_{1}}{a_{2}} D y+\frac{a_{0}}{a_{2}} y=0
$$

$$
\text { let } \frac{a_{1}}{a_{2}}=a \text { and } \frac{a_{0}}{a_{2}}=b
$$

$$
D^{2} y+a D y+b y=0
$$

$\left(D^{2}+a D+b\right) y=0 \quad$ or in simple form
$\left(m^{2}+a m+b\right) y=0 \quad$ since y is never zero, then
$m^{2}+a m+b=0 \quad$ characteristic equation of the differential equation
$y^{\prime \prime}+a y^{\prime}+b y=0$

Note that the characteristic equation can be determined from its differential equation by simple replacing

1- Distinct (not Equal) Real Roots : if $\boldsymbol{m}_{\boldsymbol{1}} \neq \boldsymbol{m}_{\boldsymbol{2}}$ are distinct real roots of the characteristic equation, then the general solution is

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}
$$

2- Equal Real Roots : if $\boldsymbol{m}_{\boldsymbol{I}}=\boldsymbol{m}_{\boldsymbol{z}}$ are equal real roots of the characteristic equation, then the general solution is

$$
y=C_{1} e^{m_{1} x}+C_{2} x e^{m_{2} x}=\left(C_{1}+C_{2} x\right) e^{m_{1} x}
$$

3- Complex Roots: if $\boldsymbol{m}_{1}=\alpha+i \boldsymbol{\beta}$ and $\boldsymbol{m}_{\boldsymbol{2}}=\alpha-i \boldsymbol{\beta}$ are complex roots of the characteristic equation, then the general solution is

$$
y=C_{1} e^{\alpha x} \cos \beta x+C_{2} e^{\alpha x} \sin \beta x=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)
$$

Note:

A complex number we mean a number of the form $\boldsymbol{z}=\boldsymbol{u}+\boldsymbol{i v}$, where \boldsymbol{u} and v are real numbers and i is the so-called imaginary unit whose existence is postulated such that $i^{2}=-1$ i.e. $i=\sqrt{-1}$

The real number u is called the real component or real part of z. The real number v is called the imaginary component or imaginary part of z.

EX1 :-

Solve the differential equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, subject to the initial conditions $y(0)=2$ and $y^{\prime}(0)=1$
Solution
$y^{\prime \prime}+4 y^{\prime}+4 y=0$
$m^{2}+4 m+4=(m+2)^{2}=0 \quad$ characteristic equation
$\boldsymbol{m}_{1}=\boldsymbol{m}_{2}=\mathbf{- 2} \quad$ equal real roots
$y=C_{1} e^{m_{1} x}+C_{2} x e^{m_{2} x}=\left(C_{1}+C_{2} x\right) e^{m_{1} x}$
$y=\left(C_{1}+C_{2} x\right) e^{-2 x} \quad$ general solution
$y=2$ when $x=0,2=C_{1}(1)+C_{2}(0)(1)=C_{1} \Rightarrow C_{1}=2$
$y^{\prime}=1 \quad$ when $\mathrm{x}=0$,
$\mathrm{y}^{\prime}=-2 \mathrm{C}_{1} e^{-2 x}+C_{2}\left(-2 x e^{-2 x}+e^{-2 x}\right)$
$1=-2(2)(1)+C_{2}[-2(0)(1)+1] \Rightarrow C_{2}=5$
$y=2 e^{-2 x}+5 x e^{-2 x} \quad$ (particular solution)
EX2 :- Find the general solution to the differential equations
(a) $y^{\prime \prime}+6 y^{\prime}+12 y=0$ and (b) $y^{\prime \prime}+y^{\prime}-6 y=0$

Solution
(a) $y^{\prime \prime}+6 y^{\prime}+12 y=0$

$$
m^{2}+6 m+12=0 \quad \text { characteristic equation }
$$

$$
\mathrm{m}_{1,2}=\left(\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 a c}}{2 a}\right)
$$

$$
\begin{aligned}
m_{1,2} & =\frac{-6 \pm \sqrt{36-48}}{2}=\frac{-6 \pm \sqrt{-12}}{2}=\frac{-6 \pm 2 \sqrt{-3}}{2} \\
& =-3 \pm \sqrt{-3}=-3 \pm \sqrt{3} i \quad \text { two complex roots }
\end{aligned}
$$

$\alpha=-3 \quad$ and $\beta=\sqrt{3}$
$y=C_{1} e^{\alpha x} \cos \beta x+C_{2} e^{\alpha x} \sin \beta x$
$y=C_{1} e^{-3 x} \cos \sqrt{3} x+C_{2} e^{-3 x} \sin \sqrt{3} x$ general solution
(b) $y^{\prime \prime}+y^{\prime}-6 y=0$
$m^{2}+m-6=0 \quad$ characteristic equation
$(m-2)(m+3)=0$ not equal roots
$y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}$
$y=C_{1} e^{2 x}+C_{2} e^{-3 x} \quad$ general solution

3- Second Order Nonhomogeneous Linear Differential Equations

$$
y^{\prime \prime}+a y^{\prime}+b y=F(x)
$$

second order nonhomogeneous linear differential equation
$y=y_{p}+y_{h}$ general solution of the nonhomogeneous equation.
y_{p} particular solution
y_{h} general solution of the corresponding homogeneous equation

Particular Solution Methods

A- Opposite Operators Method

$$
D^{2} y+a D y+b y=F(x) \quad \text { or in simple way }
$$

$$
F(D) y=F(x) \Rightarrow y=\frac{F(x)}{F(D)}=\frac{1}{\left(D-m_{1}\right)\left(D-m_{2}\right) \ldots \ldots .\left(D-m_{n}\right)} F(x)
$$

the particular solution of this equation
$y_{p}=e^{m_{1} x} \int e^{\left(m_{2}-m_{1}\right) x} \int e^{\left(m_{3}-m_{2}\right) x} \ldots \ldots . \int e^{\left(m_{n}-m_{n-1}\right) x} \int e^{-m_{n} x} F(x)(d x)^{n}$
For second order $y_{p}=e^{m_{1} x} \int e^{\left(m_{2}-m_{1}\right) x} \int e^{-m_{2} x} F(x)(d x)^{2}$
EX Solve the differential equation $y^{\prime \prime}+2 y=e^{x}+3 y^{\prime}$
Solution
1 - Find y_{h} (homogeneous solution)
$y^{\prime \prime}-3 y^{\prime}+2 y=0$
$m^{2}-3 m+2=0 \quad$ (the characteristic equation)
$(m-1)(m-2)=0 \Rightarrow m_{1}=1 ; \quad m_{2}=2$ not equal roots,
$y_{h}=C_{1} e^{x}+C_{2} e^{2 x}$
2- Find y_{p} (Particular Solution)
$y_{p}=e^{m_{1} x} \int e^{\left(m_{2}-m_{1}\right) x} \int e^{-m_{2} x} F(x)(d x)^{2}$

$$
\begin{aligned}
F(x)=e^{x} \\
\begin{aligned}
y_{p} & =e^{x} \int e^{(2-1) x} \int e^{-2 x} e^{x}(d x)^{2}=e^{x} \int e^{x} \int e^{-x}(d x)^{2} \\
& =e^{x} \int e^{x}\left(-e^{-x}\right) d \mathrm{x}=-e^{x} \int d \mathrm{x} \\
\mathrm{y}_{\mathrm{p}} & =-\mathrm{xe}^{\mathrm{x}} \text { particular solution }
\end{aligned} .
\end{aligned}
$$

$$
3 \text { - Find } y=y_{h}+y_{p}
$$

$$
y=C_{1} e^{x}+C_{2} e^{2 x}-x e^{x} \text { (The general solution) }
$$

B- Undetermined Coefficients Method

$$
y^{\prime \prime}+a y^{\prime}+b y=F(x)
$$

If F(x) has a term that is a constant multiple of	And if	Then include this expression in the trial function for y_{p}
$e^{m x}$	m is not a root of the c. equ.	$A e^{m x}$
	m is a single root of the c . equ.	$A x e^{m x}$
	m is a double root of the c . equ.	$A x^{2} e^{m x}$
$\operatorname{sinkx}, \operatorname{coskx}$	$k i$ is not a root of the c. equ.	$B \operatorname{cosk} x+C \operatorname{sinkx}$
	$k i$ is a root of the c . equ.	$B x \operatorname{cosk} x+C x \operatorname{sinkx}$
$a x^{2}+b x+c$	0 is not a root of the c. equ.	$D x^{2}+E x+F$ (chosen to match the degree of $a x^{2}+b x+c$)
	0 is a single root of the c. equ.	$\mathrm{Dx}^{3}+\mathrm{Ex}^{2}+\mathrm{Fx}$ (degree one higher than the degree of $a x^{2}+b x+c$)
	0 is a double root of the c . equ.	$\mathrm{Dx}^{4}+\mathrm{Ex}^{3}+\mathrm{Fx}^{2}$ (degree one higher than the degree of $a x^{2}+b x+c$)

EX Solve the differential equation $y^{\prime \prime}-y^{\prime}=5 e^{x}-\sin 2 x$

Solution

1- Find y_{h} (homogeneous solution)

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime} & =0 \\
m^{2}-m & =0 \quad \text { (the characteristic equation) }
\end{aligned}
$$

$\mathrm{m}(\mathrm{m}-1)=0 \quad m_{1}=1 ; \quad m_{2}=0$ not equal roots
$y_{h}=C_{1} e^{x}+C_{2}$
2- Find y_{p} (Particular Solution)

$$
\begin{gathered}
y_{p}=A x e^{x}+B \cos 2 x+C \sin 2 x \\
y_{p}^{\prime}=\left(A x e^{x}+A e^{x}-2 B \sin 2 x+2 \cos 2 x\right) \\
y_{p}^{\prime \prime}=\left(A x e^{x}+2 A e^{x}-4 B \cos 2 x-4 C \sin 2 x\right)
\end{gathered}
$$

Substituting the derivatives of y_{p} in differential equation gives
$\left(A x e^{x}+2 A e^{x}-4 B \cos 2 x-4 C \sin 2 x\right)-\left(A x e^{x}+A e^{x}-2 B \sin 2 x+2 \cos 2 x\right)=5 e^{x}-\sin 2 x$

$$
\begin{aligned}
& A e^{x}-(4 B+2 C) \cos 2 x+(2 B-4 C) \sin 2 x=5 e^{x}-\sin 2 x \\
& A e^{x}=5 e^{x} \Rightarrow A=5 \\
& 4 \mathrm{~B}+2 \mathrm{C}=0 ; 2 \mathrm{~B}-4 \mathrm{C}=-1 \Rightarrow B=-\frac{1}{10} ; C=\frac{1}{5} \\
& y_{p}=5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x \quad \text { particular solution } \\
& 3 \text { - Find } y=y_{h}+y_{p} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{h}}+\mathrm{y}_{\mathrm{p}}=C_{1} e^{x}+C_{2}+5 x e^{x}-\frac{1}{10} \cos 2 x+\frac{1}{5} \sin 2 x \\
& \text { (The general solution) }
\end{aligned}
$$

EX Solve the differential equation $y^{\prime \prime}-6 y^{\prime}+9 y=e^{3 x}$

Solution

1 - Find y_{h} (homogeneous solution)

$$
\begin{aligned}
& y^{\prime \prime}-6 y^{\prime}+9 y=0 \\
& m^{2}-6 m+9=(m-3)^{2}=0 \quad \text { (the characteristic equation) } \\
& m_{1}=m_{2}=3 \quad \text { equal real roots } \\
& y_{h}=\left(C_{1} x+C_{2}\right) e^{3 x}
\end{aligned}
$$

2 - Find y_{p} (Particular Solution)

$$
\begin{aligned}
& y_{p}=A x^{2} e^{3 x} \\
& y_{p}^{\prime}=3 A x^{2} e^{3 x}+2 A x e^{3 x} \\
& y_{p}^{\prime \prime}=9 A x^{2} e^{3 x}+12 A x e^{3 x}+2 A e^{3 x}
\end{aligned}
$$

Substituting y_{p} and the derivatives of y_{p} in differential equation gives

$$
\begin{aligned}
& \left(9 A x^{2} e^{3 x}+12 A x e^{3 x}+2 A e^{3 x}\right)-6\left(3 A x^{2} e^{3 x}+2 A x e^{3 x}\right)+9 A x^{2} e^{3 x}=e^{3 x} \\
& 2 A e^{3 x}=e^{3 x} \Rightarrow A=\frac{1}{2} \\
& y_{p}=\frac{1}{2} x^{2} e^{3 x} \\
& 3 \text { - Find } y=y_{h}+y_{p} \\
& y=y_{h}+y_{p}=\left(C_{1} x+C_{2}\right) e^{3 x}+\frac{1}{2} x^{2} e^{3 x} \\
& \quad \text { (The general solution) }
\end{aligned}
$$

EX Solve the differential equation $y^{\prime \prime}+y=3 x^{2}+4$
Solution
1- Find y_{h} (homogeneous solution)

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
& m^{2}+1=0 \quad \text { (the characteristic equation) }
\end{aligned}
$$

$$
\mathrm{m}_{1,2}= \pm i \quad \alpha=0 ; \beta=1 \quad \text { complex roots }
$$

$y_{h}=C_{1} \cos x+C_{2} \sin x$
2- Find y_{p} (Particular Solution)

$$
\begin{aligned}
& y_{p}=D x^{2}+E x+F \\
& y_{p}^{\prime}=2 D x^{-}+E \quad \quad y_{p}^{\prime \prime}=2 D
\end{aligned}
$$

Substituting y_{p} and the derivatives of y_{p} in differential equation gives
$2 D+\left(D x^{2}+E x+F\right)=3 x^{2}+4$
$D x^{2}+E x+2 D+F=3 x^{2}+4$

$$
D x^{2}=3 x^{2} \Rightarrow D=3, E=0,2 D+F=4 \Rightarrow F=-2
$$

$y_{p}=3 x^{2}-2$ particular solution
3 - Find $y=y_{h}+y_{p}$
$y=y_{h}+y_{p}=C_{1} \cos x+C_{2} \sin x+3 x^{2}-2$ general solution

C - Variation of Parameter

In this method we assume that y_{p} has the same form as y_{h}, except that the constants in y_{h} are replaced by variables.
To find the general solution to the equation $y^{\prime \prime}+a y^{\prime}+b y=F(x)$
1- Find $y_{h}=C_{1} y_{1}(x)+C_{2} y_{2}(x)$ the general solution of the homogeneous equation or in simple way . $y_{h}=C_{1} y_{1}+C_{2} y_{2}$
2 - Replace the constants by variables to form

$$
\begin{aligned}
& y_{h}=v_{1}(x) y_{1}(x)+v_{2}(x) y_{2}(x) \text { or in simple way } \\
& y_{h}=v_{1} y_{1}+v_{2} y_{2}
\end{aligned}
$$

There are two functions v_{1} and v_{2} to be determined, and requiring that differential equation be satisfied is only one condition

$$
\begin{aligned}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& y=v_{1} y_{1}+v_{2} y_{2} \\
& \frac{d y}{d x}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime}+v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=v_{1} y_{1}^{\prime}+v_{2} y_{2}^{\prime} \\
& \frac{d^{2} y}{d x^{2}}=v_{1} y_{1}^{\prime \prime}+v_{2} y_{2}^{\prime \prime}+v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}
\end{aligned}
$$

If we substitute these expressions into the left-hand side of differential equation and rearrange terms, we obtain :
$v_{1}\left[\frac{d^{2} y_{1}}{d x^{2}}+a \frac{d y_{1}}{d x}+b y_{1}\right]+v_{2}\left[\frac{d^{2} y_{2}}{d x^{2}}+a \frac{d y_{2}}{d x}+b y_{2}\right]+v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=F(x)$
The two bracketed terms are zero, since y_{1} and y_{2}
are solutions of the homogeneous equation.

$$
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=F(x)
$$

3 - Solve the following system for v_{1}^{\prime} and v_{2}^{\prime}

$$
\begin{align*}
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \ldots \ldots \tag{1}\\
& v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=F(x) \tag{2}
\end{align*}
$$

4 - Integrate to find v_{1} and v_{2}. The general solution is $y=y_{h}+y_{p}$
EX1 :- Solve the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{2 x}
$$

Solution
1 - Find y_{h} (homogeneous solution)

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

$$
m^{2}-2 m+1=(m-1)^{2}=0 \quad \text { (the characteristic equation) }
$$

$$
m_{1}=m_{2}=1
$$

$$
y_{h}=\left(C_{1}+C_{2} x\right) e^{x}=C_{1} y_{1}+C_{2} y_{2}
$$

2 - Find y_{p} (Particular Solution)

Replacing C_{1} and C_{2} by v_{1} and v_{2}

$$
\begin{align*}
& y_{p}=v_{1} y_{1}+v_{2} y_{2}=v_{1} e^{x}+v_{2} x e^{x} \\
& v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
& v_{1}^{\prime} e^{x}+v_{2}^{\prime} x e^{x}=0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \tag{1}\\
& v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=F(x) . \\
& v_{1}^{\prime} e^{x}+v_{2}^{\prime}\left(x e^{x}+e^{x}\right)=\frac{e^{x}}{2 x} \ldots \ldots \ldots . . \tag{2}\\
& v_{2}^{\prime}=\frac{1}{2 x} \quad v_{1}^{\prime}=-\frac{1}{2} \\
& v_{1}=-\int \frac{1}{2} d x=-\frac{x}{2} \\
& v_{2}=\frac{1}{2} \int \frac{1}{x} d x=\frac{1}{2} \ln \mathrm{x}=\ln \sqrt{\mathrm{x}}
\end{align*}
$$

$$
y_{p}=-\frac{1}{2} x e^{x}+(\ln \sqrt{x}) x e^{x}
$$

3 - Find $y=y_{h}+y_{p}$

$$
y=C_{1} e^{x}+C_{2} x e^{x}-\frac{1}{2} x e^{x}+(\ln \sqrt{x}) x e^{x}
$$

$$
\text { or } y=\left(C_{1}+C_{2} x-\frac{1}{2} x+(\ln \sqrt{x}) x\right) e^{x} \quad \text { general solution }
$$

EX2 :- Solve the differential equation $y^{\prime \prime}+y=\tan x$
Solution
1 - Find y_{h} (homogeneous solution)

$$
\begin{aligned}
& y^{\prime \prime}+y=0 \\
& m^{2}+1=0 \quad \text { (the characteristic equation) }
\end{aligned}
$$

$$
m_{1}=m_{2}= \pm i \quad \alpha=0 ; \beta=1 \quad \text { complex roots }
$$

$$
y_{h}=C_{1} \cos x+C_{2} \sin x
$$

2- Find y_{p} (Particular Solution)
Replacing C_{1} and C_{2} by v_{1} and v_{2}

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}=v_{1} \cos x+v_{2} \sin x
$$

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0
$$

$$
\begin{equation*}
v_{1}^{\prime} \cos x+v_{2}^{\prime} \sin x=0 \tag{1}
\end{equation*}
$$

$v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=F(x)$.
$-v_{1}^{\prime} \sin x+v_{2}^{\prime} \cos x=\tan x$.
Multiplying the first equation by $\sin x$ and the second by $\cos x$
$v_{1}^{\prime} \sin x \cos x+v_{2}^{\prime} \sin ^{2} x=0$
$-v_{1}^{\prime} \sin x \cos x+v_{2}^{\prime} \cos ^{2} x=\sin x$
Adding these two equations
$v_{2}^{\prime}=\sin x, v_{1}^{\prime}=-\frac{\sin ^{2} x}{\cos x}=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x$
$v_{1}=\int(\cos x-\sec x) d x=\sin x-\ln |\sec x+\tan x|$
$v_{2}=\int \sin x d x=-\cos x$
$y_{p}=\sin x \cos x-\cos x \ln |\sec x+\tan x|-\sin x \cos x$
$=-\cos x \ln |\sec x+\tan x|$
3 - Find $y=y_{h}+y_{p}$
$y=y_{h}+y_{p}=C_{1} \cos x+C_{2} \sin x-\cos x \ln |\sec x+\tan x|$

Note For the unknown functions v_{1} and v_{2} Cramer's rule gives

$$
\begin{aligned}
& v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & y_{2} \\
F(x) & y_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}=\frac{-y_{2} F(x)}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}} \\
& v_{2}^{\prime}=\frac{\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & F(x)
\end{array}\right|}{\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|}=\frac{y_{1} F(x)}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}
\end{aligned}
$$

3-4 Solutions of The Higher-Order Differential Equations

A- Higher-Order Homogeneous Linear Differential Equations

$\mathrm{n}>2$ higher-order general form of the homogeneous linear differential equation

$$
a_{n} D^{n} y+a_{n-1} D^{n-1} y+\ldots . .+a_{1} D y+a_{o} y=0
$$

characteristic equation

$$
m^{n}+k_{1} m^{n-1}+k_{2} m^{n-2}+\ldots . .+k_{n}=0
$$

where $k_{1}, k_{2}, \ldots ., k_{n}$ are constants
Solutions to the characteristic equation
1 - if $m_{1}, m_{2}, \ldots \ldots, m_{n}$ are not equal real roots, then the general solution is

$$
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}+\ldots \ldots+C_{n} e^{m_{n} x}
$$

2 - if $m_{1}, m_{2}, \ldots . ., m_{n}$ are equal real roots, then the general solution is
$y=\left(C_{1}+C_{2} x+C_{3} x^{2}+\ldots \ldots+C_{n} x^{n-1}\right) e^{m x}$
3 - if $m_{1}, m_{2}, \ldots ., m_{n}$ are repeated complex roots ($m=\alpha \pm \beta i$) then the general solution is
$y=\left[\left(C_{1}+C_{2} x+C_{3} x^{2}+\ldots \ldots .+C_{n} x^{n-1}\right) \cos \beta x+\left(P_{1}+P_{2} x+P_{3} x^{2}+\ldots \ldots .+P_{n} x^{n-1}\right) \sin \beta x\right] e^{\alpha x}$

EX :- Solve the differential equations

(a) $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$,
(b) $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$,
(c) $y^{\prime \prime \prime}+y^{\prime}+6 y=4 y^{\prime \prime}$, (d) $y^{\prime \prime \prime}+2 y^{\prime \prime}+8 y^{\prime}+33 y=0$

Solution

(a) $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$
$m^{3}+3 m^{2}+3 m+1=0 \quad$ (the characteristic equation)
$(m+1)\left(m^{2}+2 m+1\right)=(m+1)(m+1)(m+1)=(m+1)^{3}=0$
$m_{1}=m_{2}=m_{3}=-1 \quad$ (three equal roots)
$y=C_{1} e^{-x}+C_{2} x e^{-x}+C_{3} x^{2} e^{-x} \quad$ or $\quad y=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{-x}$
(b) $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$

$$
m^{4}+2 m^{2}+1=0 \quad \text { (the characteristic equation) }
$$

$$
\left(m^{2}+1\right)\left(m^{2}+1\right)=0
$$

$$
m_{1,2}= \pm i \text { and } m_{3,4}= \pm i
$$

$$
y=C_{1} \cos x+C_{2} \sin x+C_{3} x \cos x+C_{4} x \sin x
$$

$$
\text { or } y=\left(C_{1}+C_{3} x\right) \cos x+\left(C_{2}+C_{4} x\right) \sin x
$$

$$
\text { (c) } y^{\prime \prime \prime}+y^{\prime}+6 y=4 y^{\prime \prime}
$$

$$
y^{\prime \prime \prime}-4 y^{\prime \prime}+y^{\prime}+6 y=0
$$

$$
m^{3}-4 m^{2}+m+6=0 \quad \text { (the characteristic equation) }
$$

$$
(m+1)\left(m^{2}-5 m+6\right)=0
$$

$$
(m+1)(m-2)(m-3)=0
$$

$$
\begin{aligned}
& m_{1}=-1, m_{2}=2, m_{3}=3 \text { three not equal } \\
& y=C_{1} e^{-x}+C_{2} e^{2 x}+C_{3} e^{3 x}
\end{aligned}
$$

$$
\text { (d) } y^{\prime \prime \prime}+2 y^{\prime \prime}+8 y^{\prime}+33 y=0
$$

$$
m^{3}+2 m^{2}+8 m+33=0
$$

(the characteristic equation)

$$
(m+3)\left(m^{2}-m+11\right)=0
$$

$$
m_{1}=-3, m_{2,3}=\frac{1 \pm \sqrt{1-44}}{2}=\frac{1}{2} \pm 3.28 i
$$

$$
y=C_{1} e^{-3 x}+e^{0.5 x}\left(C_{2} \cos 3.28 x+C_{3} \sin 3.28 x\right)
$$

B- Higher-Order Nonhomogeneous Linear Differential Equations

For higher-order nonhomogeneous linear differential equations, we find the general solution in much the same way as we do for second-order equations.
$\left(y=y_{h}+y_{p}\right)$

Variations of Parameters

For third order ($\mathrm{n}=3$)
$v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}+v_{3}^{\prime} y_{3}=0$
$v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}+v_{3}^{\prime} y_{3}^{\prime}=0$
$v_{1}^{\prime} y_{1}^{\prime \prime}+v_{2}^{\prime} y_{2}^{\prime \prime}+v_{3}^{\prime} y_{3}^{\prime \prime}=F(x)$
$\left[\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right]\left[\begin{array}{c}v_{1}^{\prime} \\ v_{2}^{\prime} \\ v_{3}^{\prime}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ F(x)\end{array}\right]$

EX1 :- Solve the differential equation $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=x$

Solution

1- Find $\mathrm{y}_{h} ; \quad y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$

$$
m^{3}+3 m^{2}+3 m+1=0 \quad \text { (the characteristic equation) }
$$

$$
(m+1)\left(m^{2}+2 m+1\right)=(m+1)^{3}=0
$$

$$
m_{1}=m_{2}=m_{3}=-1 \quad \text { (three equal roots) }
$$

$y=C_{1} e^{-x}+C_{2} x e^{-x}+C_{3} x^{2} e^{-x}$ or $y=\left(C_{1}+C_{2} x+C_{3} x^{2}\right) e^{-x}$
2- Find y_{p} (Particular Solution)
since $F(x)=x$, we let $y_{p}=A+B x$

$$
y_{p}^{\prime}=B, \text { and } y_{p}^{\prime \prime}=y_{p}^{\prime \prime \prime}=0
$$

Substituting y_{p} and the derivatives of y_{p} in differential equation gives

$$
\begin{aligned}
& y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=x \\
& 0+3 * 0+3 * B+(A+B x)=x
\end{aligned}
$$

$$
3 B+A=0 ; B x=x ; B=1 \text { and } A=-3
$$

$$
3-y=y_{h}+y_{p}
$$

$$
y=C_{1} e^{-x}+C_{2} x e^{-x}+C_{3} x^{2} e^{-x}-3+x
$$

EX2 :- Solve the differential equation $\quad y^{\prime \prime \prime}+y^{\prime}=\csc x$
Solution
1 - Find $y_{h} ; \quad y^{\prime \prime \prime}+y^{\prime}=0$
$m^{3}+m=m\left(m^{2}+1\right)=0 \quad$ (the characteristic equation)
$m_{1}=0$ and $m_{2,3}= \pm i$
$y_{h}=C_{1} e^{m_{1} x}+e^{\alpha x}\left(C_{2} \cos \beta x+C_{3} \sin \beta \mathrm{x}\right)$ $y_{h}=C_{1}+C_{2} \cos x+C_{3} \sin \mathrm{x}$

2- Find y_{p} (Particular Solution)
Replacing C_{1}, C_{2} and C_{3} by v_{1}, v_{2} and v_{3}
$y_{p}=v_{1}+v_{2} \cos x+v_{3} \sin \mathrm{x}=v_{1} y_{1}+v_{2} y_{2}+v_{3} y_{3}$
$\left[\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\ y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}\end{array}\right]\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime} \\ v_{3}^{\prime}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ F(x)\end{array}\right]$
$\left[\begin{array}{ccc}1 & \cos x & \sin x \\ 0 & -\sin x & \cos x \\ 0 & -\cos x & -\sin x\end{array}\right]\left[\begin{array}{l}v_{1}^{\prime} \\ v_{2}^{\prime} \\ v_{3}^{\prime}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ F(x)=\csc x\end{array}\right]$

$$
\begin{aligned}
& \left.|D|=\left|\begin{array}{ccc}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x
\end{array}\right| \begin{array}{cc}
1 & \cos x \\
0 & -\cos x
\end{array}-\sin x \right\rvert\, 0 \begin{array}{c}
-\sin x
\end{array} \quad=\sin ^{2} x+\cos ^{2} x=1 \\
& \left|D_{1}\right|=\left\lvert\, \begin{array}{ccc|cc}
0 & \cos x & \sin x & 0 & \cos x \\
0 & -\sin x & \cos x & 0 & -\sin x \\
\csc x & -\cos x & -\sin x & \csc x & -\cos x
\end{array}\right. \\
& =\cos ^{2} x \csc x+\sin ^{2} x \csc x=\csc x \\
& \left|D_{2}\right|=\left|\begin{array}{ccc}
1 & 0 & \sin x \\
0 & 0 & \cos x \\
0 & \csc x & -\sin x
\end{array}\right| \begin{array}{lc}
1 & 0 \\
0 & 0 \\
0 & \csc x
\end{array} \quad=-\cos x \csc x=-\cot x \\
& \left|D_{3}\right|=\left|\begin{array}{ccc}
1 & \cos x & 0 \\
0 & -\sin x & 0 \\
0 & -\cos x & \csc x
\end{array}\right| \begin{array}{cc}
0 & -\cos x \\
0 & -\cos x
\end{array} \quad=-\sin x \csc x=-1
\end{aligned}
$$

$$
v_{1}^{\prime}=\frac{\left|D_{1}\right|}{|D|}=\frac{\csc x}{1}=\csc x, v_{2}^{\prime}=\frac{\left|D_{2}\right|}{|D|}=-\cot x, \quad v_{3}^{\prime}=\frac{\left|D_{3}\right|}{|D|}=-1
$$

$$
v_{1}=\int \csc x d x=-\ln |\csc x+\cot x|
$$

$$
v_{2}=\int-\cot x d x=-\ln |\sin x|
$$

$$
v_{3}=\int(-1) d x=-x
$$

$y_{p}=-\ln |\csc x+\cot x|-\ln |\sin x| \cos x-x \sin x$
3- $y=y_{h}+y_{p}$
$y=C_{1}+C_{2} \cos x+C_{3} \sin x-\ln |\csc x+\cot x|-\ln |\sin x| \cos x-x \sin x$

